The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity
نویسندگان
چکیده
Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan-proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect.
منابع مشابه
Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.
• Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron micr...
متن کاملHydrogel control of xylem hydraulic resistance in plants.
Increasing concentrations of ions flowing through the xylem of plants produce rapid, substantial, and reversible decreases in hydraulic resistance. Changes in hydraulic resistance in response to solution ion concentration, pH, and nonpolar solvents are consistent with this process being mediated by hydrogels. The effect is localized to intervessel bordered pits, suggesting that microchannels in...
متن کاملDo quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?
• The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the 'ionic effect' was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six Lauraceae species. • A positive correlation was found between ionic effect and vessel grouping parame...
متن کاملReduced content of homogalacturonan does not alter the ion-mediated increase in xylem hydraulic conductivity in tobacco.
Xylem hydraulic conductivity (K(s)) in stems of tobacco (Nicotiana tabacum) wild-type SR1 was compared to that of PG7 and PG16, two transgenic lines with increased levels of expression of the gene encoding the Aspergillus niger endopolygalacturonase (AnPGII). Activity of AnPGII removes in planta blocks of homogalacturonan (HG) with deesterified carboxyls, thus increasing the degree of neutralit...
متن کاملHeterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species.
Intervessel pits act as safety valves that prevent the spread of xylem embolism. Pectin-calcium crosslinks within the pit membrane have been proposed to affect xylem vulnerability to cavitation. However, as the chemical composition of pit membranes is poorly understood, this hypothesis has not been verified. Using electron microscopy, immunolabeling, an antimonate precipitation technique, and r...
متن کامل